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Abstract

Knowledge of the distribution of crop-available trace elements in soils is limited by the sparseness of georeferenced data and the

inherent variability of the more-labile forms of these elements. Cokriging with auxiliary variables can sometimes improve estimates

for a less densely sampled primary variable, while skewed data can often be made more suitable for geostatistical modeling by

appropriate transformation. Benefits from data transformation and cokriging in predicting Zn(DTPA) (an estimate of plant-available

Zn, extracted from soil by the chelating agent diethylenetriaminepentaacetic acid) were assessed using a georeferenced set of data

from northern North Dakota. Soil organic carbon (OC) and pH were used as auxiliary variables for cokriging. Data for Zn(DTPA),

OC and pH were available for 587 locations. The statistical distribution of the data for Zn(DTPA) was highly skewed

(approximately log-normal). Three methods of data transformation (computation of logarithms, conversion to standardized rank

order and assignment of normal scores) were carried out prior to kriging or cokriging to reduce skewness. For comparisons of

predictive success, the Zn(DTPA) data were partitioned into a predictor set of 293 sites and a testing set of 294 sites, according to a

stratified randomized approach. Data for Zn(DTPA) in the testing set were reserved for testing estimates based on the predictor set.

Cokriging on Zn(DTPA), using OC or pH as auxiliary variables, was consistently more effective than kriging on Zn(DTPA) alone.

Cokriging with OC and pH together provided additional benefit. Data transformation generally improved kriged estimates,

especially for low concentrations of Zn(DTPA) (e.g., b0.5 mg kg�1), which are important because they are indicative of soils

containing inadequate Zn for optimal crop growth. Differences among normal score cokriging, log-normal cokriging and rank-

ordered cokriging were relatively small.
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1. Introduction

Knowledge of the availability to plants of trace

elements in soils is important for maintaining or im-

proving crop production and food quality. Several of

the trace elements are micronutrients, required in small

amounts by plants or animals for normal nutrition and

health, and yet high concentrations of these or other

trace elements can be toxic (Welch, 1995). Zinc is an

example of an essential micronutrient that is often

present in soils at levels that are inadequate for optimal

nutrition of crops or for human consumers of crop-

derived foods. Available Zn may be inadequate for

optimal crop growth in as many as 50% of soils world-

wide (Sillanpää, 1990), as well as in the diets of most

humans, particularly in developing countries (Gibson,

1994).

Our understanding of the distribution of trace ele-

ments in soils is usually limited by a low geographic

density of reliable data, as well as by high variability,

skewed statistical distributions and unknown or poorly

understood spatial dependencies. In contrast to the

limited availability of information on trace elements,

data related to major soil characteristics, such as organ-

ic carbon (OC), pH, cation-exchange capacity (CEC) or

texture are often much more readily available. The

spatial relationships between trace element concentra-

tions and major soil characteristics can sometimes be

used to improve predictions of the former, as we have

shown for the prediction of total soil Cu in soils of

northern North Dakota by cokriging with CEC as an

auxiliary variable (Wu et al., 2003).

The distribution of crop-available Zn in soils of

North Dakota is of interest because a substantial num-

ber of soils contain levels that are considered low or

marginal for crop production based on crop responses

and on soil testing extractions using the chelating agent

DTPA (diethylenetriaminepentaacetic acid) (Franzen,

1999). The common occurrence of soils with low con-

centrations of DTPA-extractable Zn [Zn(DTPA)] in

North Dakota is suggested also by our own results for

almost 600 soils from the northernmost tier of 18

counties (Norvell et al., unpublished, 2002). These

results suggest that maps of Zn(DTPA) in this important

agricultural region would be useful to farmers and

agricultural extension personnel in identifying soils

that might benefit from Zn fertilization. Preliminary

analyses of the data from this survey showed that

Zn(DTPA) was related to OC and pH, suggesting that

these characteristics might serve effectively as auxiliary

variables to improve geostatistical estimates of the dis-

tribution of available Zn in soils. These relationships
could provide an important benefit in cokriging analy-

ses and map preparation because data for OC and pH

are available from other sources (e.g., Holmgren et al.,

1993; National Soil Survey Center, 2002).

Geostatistical inferences using kriging techniques

are more efficient when data for variables are distrib-

uted normally. However, data for concentrations of

elements in soils or geologic materials are often skewed

or highly skewed (e.g., Journel, 1980; McBratney et al.,

1982; Juang et al., 2001; Webster and Oliver, 2001).

Our data for Zn(DTPA) in soils of North Dakota are no

exception, as we will show below. Difficulties caused

by highly skewed distributions can often be alleviated

by appropriate transformation of the data. The most

common is the logarithmic transform (Journel, 1980;

Saito and Goovaerts, 2000), which is best suited to log-

normal data. A second approach is to use a standardized

rank order transformation prior to kriging, a simple

method that is well suited to integrating many diverse

types of data (Journel and Deutsch, 1997). A third

approach is normal score transformation (Goovaerts,

1997; Deutsch and Journel, 1998), a procedure that

transforms any distribution into a normalized distribu-

tion. All three of the above transformations appeared

potentially suited to improving the analysis of our soil

data for Zn(DTPA) and all were utilized in this study.

Other approaches for handling skewed data include

indicator kriging, multiple indicator kriging (Deutsch

and Journel, 1998; Saito and Goovaerts, 2000; Cattle et

al., 2002) and disjunctive kriging (Van Meirvenne and

Goovaerts, 2001; Webster and Oliver, 2001). These

methods were considered, but not pursued in our

work involving cokriging with auxiliary variables.

The principal reason for excluding these methods was

practical rather than conceptual in that the necessary

calculations using both primary and secondary vari-

ables are sufficiently burdensome so as to be impracti-

cal with currently available geostatistical programs. An

additional disadvantage to indicator (co)kriging is that

much information is lost in the categorization of orig-

inally continuous data into a single indicator. And, in

regard to disjunctive kriging, Deutsch and Journel

(1998, p. 17) have suggested that this method may be

replaced by the more robust approach of kriging fol-

lowing normal-score transformation of data, which is

one of the methods that we have used below.

The objectives of our study were to utilize available

data from soils of northern North Dakota to: (i) com-

pare four kriging methods [ordinary (co)kriging, log-

normal ordinary (co)kriging, rank order ordinary (co)k-

riging and normal score ordinary (co)kriging] in their

predictions for Zn(DTPA), a measure of a crop-avail-
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able trace element with highly skewed data; and (ii)

determine if the kriged estimates of concentrations of

Zn(DTPA) by these methods can be improved by in-

corporating information on the auxiliary soil character-

istics, OC and pH, when data for Zn(DTPA) are not

available.

2. Data set and methods

2.1. Data set

Data for Zn(DTPA), OC and pH were available from

our concurrent study of the geographical distribution of

micronutrients and trace elements in the 18 counties of

northern North Dakota (Norvell et al., unpublished

data, 2002). These results were obtained from soils

suited to crop production, sampled according to a strat-

ified randomized design (Petersen and Calvin, 1986) in

combination with nested sampling to characterize short-

range variations. A total of 587 sites with complete data
Fig. 1. Locations of 587 sites with measured concentrations of Zn(DTPA), p
for Zn(DTPA), OC and pH were selected for our current

objectives. Concentrations of Zn(DTPA) were mea-

sured according to Lindsay and Norvell (1978). The

analytical methods for determining pH and OC were

described by Norvell et al. (2000).

The Zn(DTPA) data for the 587 sites were parti-

tioned into two subsets, a predictor subset and a testing

subset. To provide stratification, all sites were first

sorted by their site-numbers, which had been assigned

generally according to their geographic locations from

west to east and from north to south within a county.

Then, for every two sites, one was randomly selected as

a predictor site and the other as testing site. This

process partitioned the full set of 587 sites into a subset

of 293 for predictions and a subset of 294 for testing.

The geographic distributions of these sites are shown in

Fig. 1. Summary statistics are given in Table 1. Strong-

ly positive skewness, approximating log-normality, is

shown by this Zn(DTPA) data and by the frequency

histogram in Fig. 2.
H and organic carbon in 18 counties of northern North Dakota, USA.



Table 1

Summary statistics of the attributes for the full data set, the predictor subset and the testing subset used in the study

Zn(DTPA)a Log Zn(DTPA)a OCa pH Zn (DTPA) Log Zn(DTPA) OC pH Zn(DTPA) Log Zn(DTPA) OC pH

Full set (n =587) Predictor set (n =293) Testing set (n =294)

Mean 0.99 �0.123 23.5 7.38 0.96 �0.123 23.6 7.39 1.01 �0.122 23.4 7.37

Median 0.73 �0.137 22.8 7.63 0.73 �0.137 23.1 7.67 0.72 �0.143 22.7 7.61

S.D.b 0.87 0.311 8.9 0.78 0.76 0.301 8.6 0.78 0.96 0.322 9.19 0.79

Minb 0.10 �1.000 2.7 4.97 0.10 �1.000 4.0 4.97 0.13 �0.886 2.7 5.23

Maxb 9.15 0.961 68.8 8.96 5.38 0.731 68.8 8.83 9.15 0.961 59.0 8.96

Skewb 3.31 0.18 0.57 �0.72 2.39 0.10 0.70 �0.74 3.65 0.26 0.47 �0.71
Kurtb 18.94 0.05 1.08 �0.39 8.32 �0.09 2.15 �0.34 21.41 0.16 0.26 �0.42
a Zn(DTPA), DTPA-extractable Zn (mg kg�1); log Zn(DTPA), logarithm of Zn(DTPA); OC, organic C (g kg�1).
b S.D., standard deviation; min, minimum; max, maximum; skew, skewness; kurt, kurtosis.
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2.2. Kriging methods

Before kriging, the spatial variability of original or

transformed variables was modeled with the aid of

(cross)semivariograms, which are graphs of (cross)se-

mivariances, cZiZj
(h), as a function of the separation or

lag distance, h, between all possible pairs of sample

locations. The (cross)semivariances were computed

using:

cZiZj hð Þ ¼
1

2n hð Þ
Xn hð Þ

a¼1
Zi uað Þ � Zi ua þ hð Þ½ �

� Zj uað Þ � Zj ua þ hð Þ
� �

ð1Þ

where Zi and Zj are variables; Z(u) and Z(u +h) are two

observations of a variable separated by the lag distance,

h; and n(h) is the number of pairs of observations at

this lag distance.

We found that semivariograms for the three variables

could be fitted successfully with either spherical or

exponential mathematical models. However, because

of the need to model all variograms simultaneously in

cokriging, we found the spherical model was more
Fig. 2. Frequency histogram of Zn(DTPA) data (left panel) and its cumula

histogram shows a normal distribution with the same mean (0.99 mg kg�1
effective in fitting data with a single set of parameters,

thereby meeting the requirements of semi-positive def-

initeness (Goovaerts, 1999; Goulard and Voltz, 1992).

Thus, linear combinations of an isotropic spherical

model were used to describe the spatial variability

and fit the variograms:

c hð Þ ¼ 0 for h ¼ 0

c hð Þ ¼ C0 þ C1 1:5 h=A1ð Þ � 0:5 h=A1ð Þ3
h i

þ C2 1:5 h=A2ð Þ � 0:5 h=A2ð Þ3
h i

for hVA1

c hð Þ ¼ C0 þ C1 þ C2 1:5 h=A2ð Þ � 0:5 h=A2ð Þ3
h i

for hVA2

c hð Þ ¼ C0 þ C1 þ C2 for hNA2 ð2Þ

where C0 is nugget variance; C1 is the first structural

variance at the (first) range distance, A1; and C2 is the

second structural variance at A2, assuming A2NA1N0.
tive frequency distribution (right panel). The bell-shaped line on the

) and standard deviation (0.87 mg kg�1) as the measured population.
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The ordinary kriging (OK) estimator is expressed as:

ZOK4 uð Þ ¼
Xn uð Þ

a¼1
kOK uað ÞZ uað Þ ð3Þ

where ZOK* (u) is the estimated value of Z at location u;

kOK(ua) corresponds to the weight associated with the

measured value of Z at location ua. The weights are

determined so that the estimated error variance is mini-

mized. The kOK are forced to
Pn uð Þ

a¼1 kOK uað Þ ¼ 1, in

which n(u) is the number of measured values used in

estimation in neighborhoods of u.

The ordinary cokriging (OCK) estimator for the

primary variable with multiple secondary variables is:

Z
1ð Þ4
OCK uð Þ ¼

Xn1 uð Þ

a1¼1
kOCK ua1ð ÞZ1 ua1ð Þ

þ
XNv

i¼2

Xni uð Þ
ai¼1

kOCK uð ÞZi uaið Þ ð4Þ

where Z(1)
OCK* (u) is the value of the primary variable Z1

to be estimated at the location u and kOCK(ua i
) corre-

sponds to the weight associated with the measured

values of Zi at the location. As described above, the

weights are selected to minimize the estimated error

variance ua i
. Weights for the primary variable

kOCK(ua i
) are forced to

Pn uð Þ
a1¼1 kOCK ua1ð Þ ¼ 1, while

for the secondary variables
Pn uð Þ

a1¼1 kOCK ua1ð Þ ¼ 0; Nv

is the number of variables; and ni(u) is the number of

neighboring values, Zi, used in estimating u.

In this study, all kriging inferences were made using

GSLIB (Deutsch and Journel, 1998). A search radius of

50 km was used, with a minimum number of 12 points

for the primary variable and a maximum number of 24

points for primary or secondary variables in all inter-

polations. More detailed descriptions of the geostatis-

tical methods can be found in text books such as

Goovaerts (1997) and Webster and Oliver (2001).

2.3. Kriging on transformed data

Transformation of data may be desirable before kri-

ging to normalize the data distribution, suppress out-

liers and improve data stationarity. Appropriate

transformation may also make spatial relations more

evident and provide more stable variograms. Because

of the skewness of our Zn(DTPA) data, we selected

logarithmic, rank order and normal score transforma-

tions as means to improve the predictions of Zn(DTPA)

by kriging or cokriging. Because we wished to interpret

results for Zn(DTPA) in their original concentration
units, back-transformation of our (co)kriged results

was necessary.

Log-normal ordinary kriging or cokriging (OKLG or

OCKLG) is performed on log-transformed data, i.e.,

y uað Þ ¼ logz uað Þ ð5Þ

where z(ua) is the measured value at location ua. Back-

transformation of each (co)kriging result was carried

out by exponentiation to reverse Eq. (5), providing a

prediction for Zn(DTPA) expressed in original concen-

tration units.

Rank order ordinary kriging or cokriging (OKRK or

OCKRK) is performed on standardized rank order trans-

formed data. For a variable Z with a cumulative distri-

bution function (cdf), F(z), the transformed data have a

uniform distribution on the interval from zero to one.

For a set of n samples, the empirical cumulative distri-

bution function is used to estimate F(z). In practice, the

transformation and back-transformation are carried out

as follows (Journel and Deutsch, 1997; Juang et al.,

2001):

1. Arrange the n sample in ascending order:

z 1ð ÞV N V z rð ÞV N V z nð Þ ð6Þ

where the superscript r is the rank of datum z(r) among

all n data, z(r) is called the rth order statistic.

2. Calculate the standardized rank y(r) of the sample

y rð Þ ¼ r

n
ð7Þ

The value of y(r) is between 1/n and 1.

3. Kriging is carried out on the ranks. Estimated

ranks, y*(u), are back-transformed into the original

units for variable Z:

z4 uð Þ ¼ F�1 y4 uð Þð Þ ð8Þ

Most estimated values for y*(u) usually fall between

two adjacent standardized ranks, say r/n and (r+1) /n.

Under the circumstances, the corresponding estimates

in the original concentration space z*(u) will be be-

tween z(r) and z(r+1). Thus, the value of z*(u) is

assigned to the mid-point between z(r) and z(r+1)

(Juang et al., 2001):

z4 uð Þ ¼ 0:5 z rð Þ þ z rþ1ð Þ
h i

ð9Þ

If y*(u) happens to be r/n, then

z4 uð Þ ¼ z rð Þ ð10Þ

On occasion, a value for y*(u) estimated by kriging

may fall outside the acceptable range between the

minimum of 1/n and the maximum of 1. In this case,
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we re-assigned any estimate b1/n to equal 1/n and any

estimate N1 to equal 1, prior to back-transformation.

Normal score ordinary kriging or cokriging (OKNS

or OCKNS) is performed on the normal score trans-

formed data. The normal score transform is a graphical

transform similar to a correspondence table between

equal p quantiles zp and yp of the Z cdf F(z) and the

standard Gaussian cdf G( y). The normal score trans-

form is carried out as follows (Deutsch and Journel,

1998; Saito and Goovaerts, 2000):

1. The n sample data are ranked in ascending order

similar to Eq. (6):

z 1ð ÞV N V z kð ÞV N V z nð Þ ð11Þ

where the superscript k is the rank of datum z(k) among

all n data;

2. The sample cumulative frequency of the datum

z(k) is then computed as:

pk ¼ k=n ð12Þ

3. The normal score transform of the z(k) datum is

matched to the pk quantile of the standard normal cdf:

y kð Þ ¼ G�1 F z kð Þ
h in o

¼ G�1 pk
� �

ð13Þ

4. Kriging is performed on the transformed data.

Estimates of the standard normal deviate, y*(u), are

back-transformed to original units:

z4 uð Þ ¼ F�1 G y4 uð Þð Þð Þ ð14Þ

where F(z) is the cdf of the original data.

The back-transformation of (co)kriged results by the

simple reversal of the transformation procedures de-

scribed above, converts values representing kriged

means (in transformed units), into median predictions

(in the original units of concentration). Correcting for

the reduction in skewness introduced by back-transfor-

mation into median values is not straightforward. Em-

pirical corrections can be devised, but their suitability is

uncertain (Saito and Goovaerts, 2000). Consequently,

we chose back-transformation based on straight-for-

ward reversal of the three transformations, assuming

that the benefits from carrying out (co)kriging with data

that more closely met the assumption of stationarity

would outweigh any bias introduced by utilizing pre-

dicted median concentrations of Zn(DTPA) to represent

testing locations.

2.4. Evaluation of kriging methods

To evaluate the performance of the kriging methods,

the data for Zn(DTPA) from the 294 sites in the testing
set were excluded from kriging and reserved for testing

accuracy of predictions. Data for Zn(DTPA) at the 293

sites in the predictor data set, along with pH and OC

data for all 587 sites, were then used in geostatistical

inferences leading to kriged estimates of Zn(DTPA) at

the sites reserved for testing. Descriptive statistics and

scatter plots were used to compare true (measured)

concentrations of Zn(DTPA) with the back-transformed

predictions of the several kriging methods. In addition,

we computed the mean error (ME), root mean square

error (RMSE) and the coefficient of determination (rp
2).

The ME and RMSE have their standard meanings

(Isaaks and Srivastava, 1989) and the definition of rp
2

follows Juang and Lee (1998):

ME ¼ 1

n

Xn
i¼1

z uið Þ � z4 uið Þ½ � ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

z uið Þ � z4 uið Þ½ �2
s

ð16Þ

r2p ¼ 1�

Xn
1¼1

z4 uið Þ � z uið Þ½ �2

Xn
i¼1

z uið Þ � z uð Þ
P

h i2 ð17Þ

where z(ui) is the measured value of Z at location ui,

z*(ui) is the predicted value at the same location and���
z uð Þ is the mean of the measured values. The ME

provides a measure of bias; the RMSE provides a

measure of accuracy; and the coefficient of determina-

tion, rp
2, expresses the proportion of the original vari-

ance accounted for by the model predictions.

3. Results and analyses

Summary statistics show that Zn(DTPA), OC and

pH all varied substantially among the 587 sites (Table

1, Fig. 2). The range in Zn(DTPA) was especially large,

0.10 to 9.15 mg kg�1, while pH varied from 4.97 to

8.96, and OC ranged from 2.7 to 68.8 g kg�1. The wide

range in Zn(DTPA) included many low concentrations

suggesting a low availability of Zn to crops. The 587

sites included 176 sites with Zn(DTPA)b0.5 mg kg�1

and 215 sites with Zn(DTPA) between 0.5 and 1.0 mg

kg�1, indicating respectively soils with insufficient or

marginal supplies of Zn for sensitive crops in North

Dakota (Franzen, 1999).

The data for OC and pH had low skewness and

kurtosis, but data for Zn(DTPA) were far from normally

distributed (Fig. 2). For Zn(DTPA), the mean and me-

dian differed by more than a third, the S.D. exceeded



Fig. 3. Scattergrams among Zn(DTPA), organic carbon (OC) and pH in 587 soils in northern North Dakota.
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the median and the data were strongly positively

skewed with high kurtosis. Data for Zn(DTPA) were

distributed more-nearly in a log-normal manner. A

common log-transformation was successful in normal-

izing the data as shown by the reduction of skewness

and kurtosis to 0.18 and 0.05, respectively (Table 1).

The summary statistics for rank order and normal score

transformations are not shown, because these values are
Fig. 4. Selected experimental omnidirectional (cross)-semivariograms, and fit

the text). Range distances A1 and A2 are set for 10 km and 50 km correspo
set by transformation to their standardized values (Jour-

nel and Deutsch, 1997; Deutsch and Journel, 1998).

Comparing the predictor and testing subsets shows

that their summary statistics are quite close for log

Zn(DTPA) and pH, and reasonably close for OC. For

untransformed Zn(DTPA), however, the differences

between subsets were greater. These differences be-

tween subsets are an accidental result of randomized
ted curves and parameters of the double spherical model (see Eq. (2) in

ndingly for all variogram models.



Table 2

Fitted parametersa for the double spherical model (see Eq. (2)) for six

experimental cross-semivariograms which are not shown in Fig. 4

Variablesb C0 C1 C2

OC*Zn(DTPA) 0.18 0.07 0.05

OC*Zn(DTPA)RK 0.24 0.12 0.04

OC*Zn(DTPA)NS 0.28 0.10 0.03

pH*Zn(DTPA) �0.20 �0.09 �0.08
pH*Zn(DTPA)RK �0.22 �0.12 �0.22
pH*Zn(DTPA)NS �0.22 �0.12 �0.22
a C0, nugget variance; C1, structural variance at range distance A1;

C2, structural variance at range distance A2; range distances A1 and A2

were set at 10 and 50 km, correspondingly, for all variogram models.

Other fitted variance parameters are shown in Fig. 4.
b OC, organic C; Zn(DTPA), DTPA-extractable Zn; Zn(DTPA)RK,

rank-order transformed Zn(DTPA); Zn(DTPA)NS, normal score trans-

formed Zn(DTPA).
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partitioning of the data, with much of the difference

arising from the less-than-equal distribution of ex-

treme values that commonly occurs in randomized

partitions of highly skewed populations. To the extent

that these extreme values are more difficult to model,

they are a challenge for each of the kriging methods

compared.

The bivariable relations among the variables are

shown in scattergrams (Fig. 3). The correlation between
Table 3

Summary statisticsa for true and estimated Zn(DTPA) concentrations in soils

methodsb with or without use of auxiliary variables, OC and pH

Zn(DTPA) only Zn(DTPA) with OC

True OK OKLG OKRK OKNS OCK OCKLG OCKRK
c OCKN

Mean 1.01 0.95 0.83 0.80 0.82 0.93 0.85 0.89 0.86

Med 0.72 0.84 0.74 0.74 0.72 0.83 0.69 0.71 0.68

S.D. 0.96 0.45 0.41 0.31 0.41 0.60 0.60 0.77 0.63

Min 0.13 0.41 0.32 0.42 0.35 �0.44 0.24 0.23 0.23

Max 9.15 3.10 2.87 2.24 2.81 3.42 4.51 5.38 5.25

q0.25 0.45 0.68 0.57 0.61 0.57 0.52 0.50 0.56 0.49

q0.75 1.17 1.04 0.91 0.87 0.89 1.17 0.96 0.90 0.95

cf0.5 0.31 0.05 0.07 0.06 0.15 0.24 0.23 0.19 0.27

Predictive success, all 294 sites

ME 0.06 0.18 0.21 0.19 0.08 0.16 0.12 0.15

RMSE 0.79 0.82 0.85 0.82 0.67 0.63 0.62 0.63

Predictive success, 92 sites b0.5 mg kg�1

ME � 0.40 �0.29 �0.31 �0.29 �0.16 �0.17 �0.21 �0.17
RMSE 0.46 0.36 0.36 0.35 0.36 0.27 0.27 0.26

a Med, median; S.D., standard deviation; min, minimum; max, maximum

quartile (mg kg�1); q0.5, the middle quartile (median) (mg kg�1); q0.75, the

concentrations at b0.5 mg kg�1 soil.
b OK, ordinary kriging; OKLG, log-normal ordinary kriging; OKRK, rank

ordinary cokriging; OCKLG, log-normal ordinary cokriging; OCKRK, rank
c For OCKRK, a few cokriging estimates fell above the upper boundary

corresponding back-transform within the defined range for Zn concentrations

(see Methods). To a small, but unknown extent, this restriction of high
OC and Zn(DTPA) or log Zn(DTPA) was moderately

good, while the correlation between pH and either of

these variables was weaker although still highly statis-

tically significant. Virtually, no correlation between OC

and pH was observed, indicating that these variables

explained different portions of the variability in

Zn(DTPA). A multiple-linear regression resulted in:

Zn DTPAð Þ ¼ 2:98� 0:44pHþ 0:054OC

R2 ¼ 0:49444 ð18Þ

where OC is in g kg�1 and Zn in mg kg�1. The benefit

from incorporating both OC and pH are shown by the

significant increase in R2. Similar or greater increases in

R2 were found when OC and pH were incorporated in

multiple-linear regressions for any of the transformed

concentrations of Zn(DTPA).

The experimental (cross)variograms show different

degrees of spatial auto-continuity or cross-continuity of

attributes (Fig. 4). The variogram for Zn(DTPA) is

scattered and erratic at all lag distances. This effect is

attributable primarily to the influence of extreme values

in the skewed data set. Well-behaved variograms with

clear spatial structure were obtained for Zn(DTPA)

following log, rank order or normal score transforma-
(mg kg–1) at the 294 sites of the testing set as predicted by four kriging

Zn(DTPA) with pH Zn(DTPA) with OC and pH

S OCK OCKLG OCKRK
c OCKNS OCK OCKLG OCKRK

c OCKNS

0.96 0.87 0.87 0.87 0.93 0.88 0.88 0.88

0.82 0.71 0.72 0.71 0.83 0.70 0.71 0.68

0.58 0.52 0.60 0.51 0.64 0.61 0.75 0.63

�0.03 0.24 0.28 0.25 �0.55 0.17 0.10 0.15

3.30 3.37 5.38 3.30 3.54 5.04 5.38 5.25

0.59 0.55 0.60 0.54 0.47 0.50 0.54 0.49

1.21 1.03 0.93 1.00 1.27 0.99 0.93 0.99

0.18 0.19 0.13 0.19 0.27 0.27 0.18 0.27

0.05 0.14 0.14 0.14 0.08 0.13 0.13 0.13

0.77 0.76 0.76 0.76 0.66 0.62 0.67 0.61

�0.21 �0.20 �0.24 �0.21 �0.03 �0.11 �0.15 �0.12
0.36 0.27 0.29 0.27 0.31 0.20 0.21 0.19

; ME, mean errors; RMSE, root mean square errors; q0.25, the lower

upper quartile (mg kg�1); cf0.5, cumulative frequency of Zn(DTPA)

-order ordinary kriging; OKNS, normal score ordinary kriging; OCK,

-order ordinary cokriging; OCKNS, normal score ordinary cokriging.

in standardized rank (i.e., values N1.0). These overestimates have no

, and thus were assigned to the maximum value of 1.0 as is customary

values is likely to artificially inflate predictive success by OCKRK.
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tion. Each of the three transformations successfully

reduced the distortions from skewness and extreme

values. The cross-variogram between OC and pH

shows little spatial co-variability, which echoes the

lack of relationship shown in their scatterplot (Fig. 3)

and near-zero correlation coefficient.

The double spherical model (Eq. (2)) was chosen to

provide reasonable fit for all the variograms, using A1

set at 10 km and A2 at 50 km. The fitted nugget

variances and structural variances are shown either on

the variograms of Fig. 4 or in Table 2. With these

parameters, each coregionalization matrix was positive

semi-definite as required to conduct cokriging (Goo-

vaerts, 1999).

Estimates for Zn(DTPA) at the 294 locations of the

testing set were obtained by the four kriging methods
Fig. 5. Comparisons of measured (true) Zn(DTPA) concentrations in soils of th

or cokriging methods using four combinations of variables. From left to right

while the plots in subsequent columns show cokriging results utilizing Zn(DT

to bottom, the four rows contain results from ordinary (co)kriging, log-normal

ordinary (co)kriging, respectively. Both x-axis and y-axis use log scale to bett

by ordinary cokriging from appearing (4 sites for Zn(DTPA)+OC, 2 sites fo
using the fitted parameters in Fig. 4 and Table 2. Back-

transformations for the estimates based on log-normal

ordinary (co)kriging, rank order (co)kriging or normal-

score (co)kriging were performed according to formulas

presented in Section 2.2.

Summary statistics for Zn(DTPA) estimated by all

kriging methods for the 294 testing sites are tabulated

in Table 3. For comparison, this table includes also the

statistics for the true values of Zn at these same sites,

i.e., the values that were excluded from kriging and

reserved by design to validate estimates based on the

predictor set data. Detailed comparisons between true

values and estimates by the kriging methods are shown

in Fig. 5. Perfect agreement between true and predicted

values would be reflected in having all pairs of points

fall on the 1:1 line (dashed line).
e testing set (n =294) with values predicted by four methods of kriging

, the first column shows results for kriging using Zn(DTPA) data only,

PA) and auxiliary data for organic carbon (OC), pH or both. From top

ordinary (co)kriging, rank order ordinary (co)kriging and normal score

er display the data, but this choice prevents several negative predictions

r Zn(DTPA)+pH and 16 sites for Zn(DTPA)+OC+pH).
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(Co)kriging on predictor set data, transformed to

reduce positive skewness, produced better estimates

of the median concentration of Zn(DTPA) in the testing

set than did similar calculations based on untrans-

formed data. For example, the true median of 0.72

mg kg�1 was reasonably well predicted by (co)kriging

on transformed data (medians of 0.68–0.74 mg kg�1),

but was substantially over-predicted by (co)kriging on

untransformed data (medians of 0.82–0.84 mg kg�1).

On the other hand, the overall mean for Zn(DTPA)

(1.01 mg kg�1 ) in the positively skewed testing site

data was more successfully reproduced by the more

skewed results from (co)kriging on untransformed

data (means of 0.93–0.96 mg kg�1).

The predictions of Zn(DTPA) derived from the

kriging models were generally less diverse than the

actual values measured at testing sites, in large part

because of the averaging process inherent in the kri-

ging and in part because of the effects of back-trans-

formation. This restriction is demonstrated in Table 3

by the compressions in the overall range for predicted

values (max–min), the interquartile range ( q0.75–q0.25)

and the S.D. This compression in the distribution of

the predicted values was ameliorated by the incorpo-

ration of auxiliary variables. The combination of OC

and pH was generally more successful in this regard

than either of these secondary variables alone. More

detail is provided by Fig. 5, which shows that all

methods tended to overestimate low concentrations
Fig. 6. Root mean squared errors (RMSE) for cokriging predictions of Z

predictions are shown for population deciles of the 294 testing set sites, ran

(OCK), log-normal ordinary cokriging (OCKLG), rank order ordinary cok

compared.
(most values are below the 1:1 line) while underesti-

mating high concentrations (most values are above the

1:1 line). The conditional bias demonstrated by this

counterclockwise rotation of the elongated cluster of

points (Goovaerts, 1997, p. 182) varied substantially

among the different kriging approaches. The degree of

bias was reduced by the incorporation of auxiliary

variables in OCK, OCKLG and OCKNS, while effects

for OCKRK were variable.

The quantitative success of prediction was assessed

in several ways. The RMSE for predicted concentra-

tions of Zn(DTPA) was decreased when OC or pH was

used as a secondary variable. OC was more effective

than pH, but OC and pH together almost always pro-

vided the lowest RMSE (Table 3). The success of

predictions for Zn(DTPA) differed with the type of

kriging method used, with the best estimates usually

achieved by (co)kriging using transformed data. Differ-

ences among OCKNS, OCKRK and OCKLG were small.

The trends in calculated rp
2 for these approaches were

similar to those for RMSE (Fig. 5, Table 3).

None of the kriging methods were successful in pre-

dicting the highest concentrations of Zn(DTPA) in this

skewed data set. About one-half of the total RMSE in

predictions was contributed by the two deciles of sites

containing the highest concentrations of Zn(DTPA), as

shown in Fig. 6 for all four kriging approaches using OC

and pH as auxiliary variables. Predictions of Zn(DTPA)

by all approaches were more successful for sites in the
n(DTPA), using OC and pH as auxiliary variables. The RMSEs for

ked by their measured Zn(DTPA) concentrations. Ordinary cokriging

riging (OCKRK) and normal score ordinary cokriging (OCKNS) are
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lower eight deciles of concentration, and predictions by

OCKNS, OCKRK and OCKLG were consistently more

accurate than those by OCK.

Making successful predictions of the need of soils for

Zn fertilization is one of the goals of understanding the

distribution of Zn(DTPA) concentrations. For soil test-

ing purposes, a concentration of 0.5 mg kg�1 of

Zn(DTPA) is commonly used in North Dakota, and

several other States in the mid-western and western

USA, as a limit to identify soils which commonly fail

to provide adequate Zn for most row crops and small

grains (e.g., see numerous on-line recommendations of

State Agricultural Extension Services). Predictions by

the four kriging approaches were compared for the

group of 92 testing set soils, which contained less than

0.5 mg kg�1 of Zn(DTPA). Table 3 shows that the

RMSEs for OCKNS, OCKRK and OCKLG were com-

monly one quarter to one-half lower than for OCK,

demonstrating that kriging estimates for Zn(DTPA) in

these soils, with low plant-available Zn, were most

successful when the data for Zn(DTPA) were trans-

formed prior to kriging. The results show also that use

of auxiliary variables in kriging was important in reduc-

ing RMSE values in these low-Zn soils, especially so

when both OC and pH were used together. TheMEs also

declined in magnitude (although all were negative be-

cause measured values were limited by analytical sen-

sitivity while predicted values were not).

As a confirmation of the results presented above,

we reversed the testing and predictor sets, and then

repeated all kriging inferences. The results were sim-

ilar (data not shown), leading to the same conclusions

with respect to the benefits from cokriging and data

transformation.

4. Discussion and conclusions

4.1. Kriging and cokriging with auxiliary information

Ordinary kriging is the anchoring algorithm of geo-

statistics (Deutsch and Journel, 1998, p. 66). OK is a

robust approach and it combines many of the desirable

features of alternative methods of geospatial inference

(Isaaks and Srivastava, 1989, pp. 318–321). Ordinary

cokriging has the advantages of OK, but, in addition,

OCK is able to incorporate auxiliary information to

further improve estimates of a primary variable (Isaaks

and Srivastava, 1989, p. 399). Not surprisingly, the

advantages of cokriging with a correlated variable are

most evident when the secondary variable has been or

will be sampled more densely than the primary variable

(Goovaerts, 1999). Examples of cokriging with one
secondary variable can be found easily in the soil

literature. For example, we improved estimates of soil

Cu in North Dakota soils using auxiliary data for CEC

(Wu et al., 2003); McBratney and Webster (1983)

interpolated and mapped the silt content of topsoils

with the aid of silt or sand content of the corresponding

subsoils; Vauclin et al. (1983) made improved estimates

of water content from data on the distribution of soil

texture; and Stein et al. (1988) predicted the soil mois-

ture deficit using the mean highest water-table depth as

an inexpensively measured co-variable.

Although cokriging with more than one secondary

variable has the potential to further improve estimates of

a primary variable, this approach has been used only

occasionally. For example, Han et al. (2003) used clay

and silt contents as secondary variables for predictions of

N, P and K in soils, but found only slight improvements

over OK alone, and only then at their higher sampling

density. Using a test data set, Goovaerts (1998) showed

that cokriging with two or three auxiliary variables pro-

duced better estimates than krigingwith none, but did not

report whether the use of more than one auxiliary vari-

able increased benefits above use of a single variable.

Our results for Zn(DTPA) demonstrated a clear ben-

efit from cokriging with two auxiliary variables in

predicting Zn(DTPA). This improvement was enhanced

by several factors. First, by assessing this benefit at

testing set locations where the auxiliary variables were

available, the benefit was maximized and most easily

demonstrated, as was our intent. Improvements at the

more numerous sites having no auxiliary data would

clearly be less. Secondly, the benefit from using two

auxiliary variables was enhanced by the fact that OC

and pH were themselves not highly correlated, even

though each was correlated with Zn(DTPA). Thirdly,

benefits from use of auxiliary variables were favored by

our comparison of predictor and testing populations of

equivalent size. And, finally, the spatial dependency for

Zn(DTPA) in our data was not particularly strong, so

that there was ample opportunity for improvement from

auxiliary information.

In a chemical sense, the benefits from using pH in

estimating the level of available Zn in these soils arose,

presumably, from the well-recognized influence of pH

on metal solubility and extractability. Similarly, benefits

from using OC as an auxiliary variable arose, presum-

ably, from the contributions to extractable Zn(DTPA)

from Zn associated with the metal-binding sites on soil

organic matter. In addition to providing mechanistically

reasonable explanations for their association with ex-

tractable soil Zn, a separate advantage to using pH and

OC as auxiliary variables is that data are often readily
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available from other sources, such as state soil testing

programs or the compiled characterization data for soil

pedons (National Soil Survey Center, 2002).

The main disadvantage to cokriging is that it is more

computationally demanding than kriging. If n variables

are involved, n� (n +1) /2 auto- and cross-semivario-

grams must be inferred and jointly modeled, and a large

cokriging system must be solved (Goulard and Voltz,

1992; Goovaerts, 1999). Thus, in our work with

Zn(DTPA), OC and pH, we needed to model jointly

six variograms; and, to reduce computational time, the

cokriging calculations were carried out on a high speed

computing system at the Cornell Theory Center (Cor-

nell University, Ithaca, NY).

4.2. Kriging with transformed data

Ordinary (co)kriging is the best linear unbiased es-

timator of variables at unmeasured locations under the

stationarity assumption (Goovaerts, 1997). However,

real data hardly ever completely satisfy this assumption,

as illustrated by our data for Zn(DTPA), which were

highly skewed. The resulting experimental variogram

for Zn(DTPA) was erratic, making it hard to see the

spatial structure or fit a model. For these data, logarith-

mic, rank order and normal score transformations were

successful in removing most skewness, and the recom-

puted variograms exhibited clear spatial structure.

While transformation of skewed data may improve

its suitability for (co)kriging, transformation and back-

transformation may have other effects that are hard to

interpret or may add uncertainty. As already mentioned,

all three of the back-transformation methods used in

this paper yield a prediction, in the original units of

measure, of a median rather than a mean value for each

(co)kriged location. In addition, the log transformation

is reported to be especially sensitive to slight variations

in the sill of the variogram and exponentiation during

back-transformation exaggerates variability (Armstrong

and Boufassa, 1988; Deutsch and Journel, 1998, pp.

75–76; Roth, 1998). Despite these concerns, OKLG and

OCKLG were among the most successful methods for

predicting the concentrations of Zn(DTPA), as shown

by Table 3 and Fig. 5.

The rank order and normal score transformations

share the advantage that data of diverse types, scales,

ranges and reliability can be integrated in the kriging

process (Journel and Deutsch, 1997). The normal score

transformation has the added advantage of producing a

normalized distribution out of any rank-ordered data,

but the inherent assumption that the distribution is truly

multi-Gaussian cannot be adequately tested (Goovaerts,
1999). The rank order approach has the added limitation

of generating only a uniform distribution of transformed

observations, and it has the potential to produce some

estimates that must be adjusted arbitrarily to fall within

the permissible standardized range for ranks [0,1] (Jour-

nel and Deutsch, 1997), a problem illustrated by our

own results. Nevertheless, both rank order and normal

score transformation of the Zn(DTPA) data of this study

yielded variograms with clear spatially dependent struc-

ture as shown in Fig. 4, and OCKRK and OCKNS were

both better predictors for Zn(DTPA) than OCK.

In summary, it is clear that predictions of Zn(DTPA)

in soils at sparsely distributed sites in northern North

Dakota were improved substantially by cokriging with

auxiliary data for OC or pH. Utilizing OC and pH

together as secondary variables improved the predic-

tions further. We believe that predictions of crop-avail-

able forms of other trace metals in soils are likely to

benefit similarly, because OC is related to the abun-

dance of metal binding sites and pH is well recognized

as influencing metal solubility. Transformation of our

Zn(DTPA) data to remove skewness and reduce the

distorting influence of high outliers improved estimates

of Zn(DTPA) at testing locations where these data were

treated as unavailable during kriging or cokriging. Log-

arithmic, rank order and normal score transformations

were all about equally successful in this regard. Predic-

tions of Zn(DTPA) in soils containing low levels of

extractable Zn were especially improved by transfor-

mation prior to cokriging.
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